Potassium-selectivities of Bis(benzo-15-crown-5) Derivatives Obtained from Cyclohexanedicarboxylic Acids

Keiichi Kimura,* Atsuo Ishikawa, Hiroshi Tamura, and Toshiyuki Shono*

Department of Applied Chemistry, Faculty of Engineering, Osaka University, Yamada-oka 2-1, Suita, Osaka 565

(Received November 25, 1982)

Synopsis. Several bis(benzo-15-crown-5) derivatives containing a cyclohexane or benzene ring in the bridge chain were synthesized as neutral carriers of coated-wire potassium-selective electrodes. The bis(benzocrown ether) derivative obtained from cis-1,2-cyclohexanedicarboxylic acid was found to be outstandingly potassium-selective.

Macrobicyclic polyethers containing benzo-15-crown-5 moieties at the end of a short bridge chain, which are commonly referred to as bis(benzo-15-crown-5) derivatives, have received considerable attention because of their attractive cation-binding properties. 1-5) They can form stable sandwich-type 2:1 crown ether ring to cation complexes with K+ intramolecularly, which results in high K+-selectivity of them on binding alkali and alkaline earth metal ions. Accordingly, some of the bis(benzo-15-crown-5) derivatives have turned out to be good neutral carriers for poly(vinyl chloride) (PVC) membrane K+-selective electrodes, 6-8) although their K+-selectivities depend more or less upon the configuration of bis(benzocrown ether) derivatives⁷⁾ and the length of the chain connecting two crown ether moieties.6)

We would like to report here the K⁺-selectivities of bis(benzo-15-crown-5) derivatives containing a cyclohexane or benzene ring in the bridge chain in the coated-wire type of K⁺-selective electrodes based on them.

Experimental

Chemicals. Bis(benzo-15-crown-5) derivatives 1 through

4 were synthesized by the reaction of 4'-bromomethylbenzo-15-crown-5 with appropriate dicarboxylic acid potassium salts in acetonitrile, in a similar way to that reported previously.⁹ The purification of them was performed by gel permeation chromatography. (1—3: colorless oil; 4: colorless crystal, mp 100—102 °C) The plasticizer, o-nitrophenyl octyl ether (NPOE), was prepared in a usual manner, ¹⁰ and then purified by repeated distillation.

Electrode Construction. The coated-wire ion-selective electrodes were constructed using a silver wire, according to the procedure reported elsewhere.¹¹⁾ The coating solution consists of 15 mg crown ether, 200 mg NPOE, 100 mg PVC, and 3 ml tetrahydrofuran. The external reference electrode was a standard calomel electrode with a 0.1 M (1 M=1 mol/dm³) NH₄NO₃ electrolyte bridge. No special conditioning of the ion-selective electrodes was performed before use.

Measurement. All of the emf measurements were made at 25 ± 0.1 °C. Standard K+ aqueous solutions for calibration plots were obtained by gradual dilution of 1 M KCl solution. Selectivity coefficients $(k_{\rm KM})$ were determined by a mixed solution method, by taking a constant background of an interfering ion and varying K+ concentration. The constant concentrations of Na+, Rb+, Cs+, and NH₄+ are 1×10^{-1} , 1×10^{-3} , 1×10^{-3} , and 1×10^{-2} M, respectively.

Results and Discussion

Three kinds of cyclohexanedicarboxylate-type bis-(benzo-15-crown-5) derivatives 1, 2, and 3, which are derived from cis-1,2-, trans-1,2-, and cis-1,4-cyclohexanedicarboxylic acids, respectively, were synthesized for the purpose of obtaining lipophilic and ion-selective neutral carriers for K⁺-selective electrodes. Terephthalate-type bis(crown ether) derivative 4 was also prepared for comparison. The K⁺-selectivities of the bis(benzo-15crown-5) derivatives were elucidated by measuring the electrochemical selectivity of coated-wire ion-selective electrodes based on them, which can be easily made up owing to the simple construction.

The electrode properties are summarized in Table 1. The electrodes of bis(crown ether) derivatives 1 and 3 showed a linear response to K⁺ activity in the range 10^{-4} — 10^{-1} M, the slope of calibration plots being 55 and 58 mV per decade of activity change at 25 °C. The electrodes based on 2 and 4 exhibited a little poorer

Table 1. Electrode properties of coated-wire K^+ -selective electrode based on bis(benzo-15-crown-5) derivatives 1 through 4

Bis(crown ether)	Maximal ^{a)} slope mV/decade	Range ^{b)} pK	k _{KM}			
			Na+	Rb+	Cs+	NH ₄ +
1	55	4-1	5×10-4	5×10 ⁻²	5×10 ⁻³	2×10 ⁻¹
2	4 6	4—1	3×10^{-1}	1×10^{-1}	3×10^{-2}	1×10^{-2}
3	58	4—1	3×10^{-3}	2×10^{-1}	5×10^{-2}	3×10^{-1}
4	51	4—2	2×10^{-3}	3×10^{-1}	8×10^{-2}	5×10 ⁻²

a) emf change in ten-time change of K^+ activity. b) $pK = -\log [K^+]$.

response than that of 1 and 3.

It should be noted that bis(benzo-15-crown-5) derivatives 1, 3, and 4 are better in the K+-selectivity over Na+ than 2. Particularly, the electrode of 1, ciscyclohexanedicarboxylate type of bis(benzo-15-crown-5) derivative, possesses an excellent $k_{\rm KNa}$ value, 5×10^{-4} . It has been reported previously that a cis-bis(benzo-15crown-5) derivative obtained from maleic acid is easy to form sandwich-type complexes with K+ intramolecularly, being rather K+-selective compared to the corresponding trans isomer derived from fumaric acid.3,7) This is also the case in these cyclohexanedicarboxylate type of bis(benzo-15-crown-5) derivatives. That is to say, the bis(benzo-15-crown-5) derivatives containing cis configuration, 1 and 3, are much more K+-selective than that containing trans configuration, 2. Also, the k_{KNa} value for the electrode based on 1 is about one order of magnitude smaller than that of 3, implying that the two crown ether moieties in the latter bis(benzo-15crown-5) derivative are a little too far apart for the formation of the stable intramolecular sandwich-type K+ complexes. The terephthalate unit of bis(crown ether) derivative 4 may be unfavorable again due to the rigidity of benzene ring.

Thus, the bis(benzo-15-crown-5) derivative obtained from cis-1,2-cyclohexanedicarboxylic acid is a highly K⁺-selective neutral carrier for the ion-selective electrode. The response time of the electrode was within 10 s on measuring by an incremental method. In the stability and reproducibility of the emf reading, the electrode is

similar to that based on the previous bis(benzo-15-crown-5) derivative.¹¹⁾ Bis(benzo-15-crown-5) derivative 1 is surely superior to the previous ones^{6,7)} in the lipophilicity which is definitely required as the neutral carrier of the ion-selective electrodes, although they all seem to resemble in the K+-selectivity.

References

- 1) M. Bourgoin, K. H. Wong, J. Y. Hui, and J. Smid, J. Am. Chem. Soc., 97, 3462 (1975).
- 2) K. Kimura, T. Maeda, and T. Shono, *Talanta*, **26**, 945 (1979).
- 3) K. Kimura, T. Tsuchida, T. Maeda, and T. Shono, Talanta, 27, 801 (1980).
- 4) F. Wada, R. Arata, T. Goto, K. Kikukawa, and T. Matsuda, Bull. Chem. Soc. Jpn., 53, 2061 (1980).
- 5) S. Shinkai, T. Nakaji, T. Ogawa, K. Shigematsu, and O. Manabe, J. Am. Chem. Soc., 103, 111 (1981).
- 6) K. Kimura, T. Maeda, H. Tamura, and T. Shono, J. Electroanal. Chem. Interfacial. Electrochem., 95, 91 (1979).
- 7) H. Tamura, K. Kimura, and T. Shono, Nippon Kagaku Kaishi, 1980, 1648.
- 8) K. W. Fung and K. H. Wong, J. Electroanal. Chem. Interfacial. Electrochem., 111, 359 (1980).
- 9) K. Kimura, H. Tamura, T. Tsuchida, and T. Shono, Chem. Lett., 1979, 611.
- 10) C. F. H. Allen and J. W. Gates, Jr., Org. Synth., Coll. Vol. III, 140 (1955).
- 11) H. Tamura, K. Kimura, and T. Shono, *Anal. Chem.*, **54**, 1224 (1982).